
Approximation Algorithms for Unsplittable Flow and
Interval Coloring Problems on Paths and Trees

Arindam Pal
arindamp@cse.iitd.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Delhi

November 2, 2012

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 1 / 50

Agenda

The Unsplittable Flow Problem and its variants

Survey of existing results and our contribution

Approximation algorithms for Round-UFP

Approximation algorithms for Max-UFP and Bag-UFP

Conclusion and future work

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 2 / 50

Unsplittable Flow Problem with Rounds (Round-UFP)

Given a path P = (v1, e1, v2, e2, . . . , en−1, vn) on n nodes.

Edge ei has capacity c(ei) ≡ ci.
There are k intervals (requests) I1, . . . , Ik.

Ii = [si, ti] and there is a demand di associated with it.

A set of intervals I is feasible if the total demand of all intervals in I
passing through any edge e does not exceed it’s capacity c(e).

The goal is to partition the requests I1, . . . , Ik into a number of sets
such that each set is feasible and the total number of sets is
minimized.

We can think of this as assigning colors to intervals so that each color
class is feasible and we want to minimize the number of colors.

This can also be thought of as routing the requests in a feasible
manner in a number of rounds.

Can be studied under offline or online setting.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 3 / 50

A sample UFP instance

d1 = 7, w1 = 5

d2 = 5, w2 = 10

d3 = 8, w3 = 9

d4 = 6, w4 = 8

10 10 13 15 14 11 10

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 4 / 50

The Max-UFP and Bag-UFP problems

For Max-UFP, the setting is similar to Round-UFP except, for
each request Ii there is a profit wi.

If we can route a request, we get the corresponding profit.

The objective is to select a feasible subset of requests having the
maximum profit.

In Bag-UFP, there is a set of bags each containing a set of requests.

Each bag Bj has a profit pj .

At most one request can be selected from each bag. If we select a
request from a bag Bj , we get the profit pj .

The objective is to select a feasible (both bag and capacity
constraints) subset of requests of maximum profit.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 5 / 50

Motivation

The path graph is a natural setting for many applications, where a
limited resource is available and the amount of the resource varies
over time.

Many combinatorial optimization problems which are NP-Hard on
general graphs remain NP-Hard on paths.

We can represent time instants as vertices, time intervals as edges
and the amount of resource available at a time interval as the
capacity of the corresponding edge.

The requirement of a resource between two time instants can be
represented as a demand between the corresponding vertices with a
certain profit associated with it.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 6 / 50

Application of Round-UFP

Consider an optical line network, where each color corresponds to a
distinct frequency in which the information flows.

Different links along the line have different capacities, which are a
function of intermediate equipment along the link.

Each request uses the same bandwidth on all links that this request
contains.

As the number of distinct available frequencies is limited, minimizing
the number of colors for a given sequence of requests is a natural
objective.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 7 / 50

Related Work for Round-UFP

Round-UFP is NP-Hard for arbitrary demands since, if we take P
to be a single edge, this is the Bin-Packing problem.

If all capacities and demands are 1, this is the Interval Graph
Coloring problem, for which a greedy algorithm gives the optimum
coloring with ω colors, where ω is the maximum clique size of the
interval graph.

For the corresponding online problem, Kierstead and Trotter gave an
online algorithm which uses at most 3ω − 2 colors. They also gave a
lower bound of 3ω − 2 on the number of colors required in any
coloring output by any deterministic online algorithm.

The best upper bound known for the First-Fit algorithm due to
Pemmaraju et al. is 8ω, and a lower bound of 4.4ω was shown by
Chrobak and Slusarek.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 8 / 50

Related Work for Round-UFP . . .

For unit capacities and arbitrary demands, Narayanaswamy gave a
10-competitive algorithm. Epstein et al. proved a lower bound of
24
7 ≈ 3.43 for this problem.

For arbitrary capacities and demands, Epstein et al. gave a
78-competitive algorithm, assuming the maximum demand is at most
the minimum capacity (no-bottleneck assumption).

They also proved that without this assumption, there is no
deterministic online algorithm for interval coloring with nonuniform
capacities and demands, that can achieve a competitive ratio better

than Ω(log log n) or Ω
(

log log log
(
cmax
cmin

))
. Here, cmax and cmin are

the maximum and minimum edge capacities of the path respectively.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 9 / 50

Application of Max-UFP and Bag-UFP

Consider a system offering a resource in limited quantity, where the
availability of this resource varies over time.

There are a set of users who want to use different amounts of this
resource over different time intervals and are ready to pay its owner.

The aim of the owner is to select a subset of these users to maximize
his profit, while satisfying the resource availability constraint at each
instant.

The concept of bag constraints (at most one request can be selected
from each bag) in Bag-UFP arises in a situation where a job can
specify a set of possible time intervals where it can be scheduled.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 10 / 50

Related Work for Max-UFP and Bag-UFP

Max-UFP and Bag-UFP are weakly NP-Hard, since they
contain the Knapsack problem as a special case, where there is just
one edge.

Recently, it has been proved that Max-UFP is strongly NP-Hard,
even for the restricted case where all demands are chosen from
{1, 2, 3} and all capacities are uniform.

This means that the problem does not have a fully polynomial time
approximation scheme (FPTAS).

However, the problem is not known to be APX-hard, so a polynomial
time approximation scheme (PTAS) may still be possible.

When all capacities, demands and profits are 1, Max-UFP
specializes to the Maximum Edge-Disjoint Paths problem.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 11 / 50

Approximation Algorithms for Max-UFP and Bag-UFP

For Max-UFP, Chekuri et al. gave a (2 + ε)-approximation
algorithm on paths and a 48-approximation algorithm on trees under
NBA.

These algorithms are based on the idea of rounding a LP relaxation of
Max-UFP.

Bonsma et al. gave a polynomial time (7 + ε)-approximation
algorithm for any ε > 0, and a 25.12-approximation algorithm with
running time O(n4 log n) without NBA.

Chekuri et al. gave a O(log2 n)-approximation algorithm on trees
without NBA.

Chakaravarthy et al. gave a 120-approximation algorithm for the
Bag-UFP problem on paths assuming NBA.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 12 / 50

Our Results

Optimal algorithm for unit demands, arbitrary capacities for
Round-UFP.

3-approximation algorithm for unit capacities, arbitrary demands for
Round-UFP.

24-approximation algorithm for arbitrary capacities and demands with
NBA for Round-UFP.

17-approximation algorithm for Max-UFP.

65-approximation algorithm for Bag-UFP.

58-competitive online algorithm for Round-UFP.

64-approximation algorithm for Round-UFP on trees.

We give a unified framework for solving all these problems.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 13 / 50

Preliminaries

Fe = Set of all requests passing through edge e.

le = Total demand of all requests passing through e =
∑

i:Ii∈Fe
di, is

the load on edge e.

re =
⌈
le
ce

⌉
, is the congestion on edge e.

r = maxe∈E re, is the maximum congestion on any edge.

Let OPT be the minimum number of colors required for the given
problem instance. Clearly, OPT ≥ r.

If ω demands are mutually incompatible with each other, then each of
them has to be assigned a different color. Hence, OPT ≥ ω.

The bottleneck edge bi of a request Ii is the minimum capacity edge
on the path from si to ti.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 14 / 50

An Algorithm for Round-UFP for Unit Demands

Preprocess the input graph to transform it into a canonical form.

Create a bipartite graph with source and destination vertices.

Find r edge-disjoint perfect matchings.

Recover the coloring in the original graph.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 15 / 50

Preprocessing and Canonical Form

Add: In the original problem instance, introduce additional intervals
of unit demand and unit length so that the congestion on every edge
becomes r.

Combine: Suppose there exists a pair of intervals Ii = [si, ti] and
Ij = [sj , tj] such that ti = sj . We combine these two intervals and
replace them with a single (longer) interval Ik = [si, tj]. We keep
repeating this process until we can’t find any such pair of intervals.

Shortcut: If (vi, ei, . . . , ej−1, vj) is a path such that none of the
vertices between vi+1 and vj−1 are the source or destination of any
request, then we can replace the entire path with a single edge e
between vi and vj , whose capacity is ce = min(ci, . . . , cj−1). Since
no request is starting or ending at these vertices, the load on all these
edges (rct, t = i, . . . , j − 1) is the same. Hence, the capacity of all
these edges (ct, t = i, . . . , j − 1) is also the same.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 16 / 50

Transforming a Problem Instance into Canonical Form

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6
2 3 2 4 2 2 3 2 4 2

ADD

d1
d2

d3
d4

d5
d6
d7

d8

d1
d2

d3
d4

d5
d6
d7

d8

v11
v12
v13

v14
v21

v22
v23
v24
v25

v31
v43
v44
v45
v46
v47
v48

v41
v42

v51
v52

v53

v54

COMBINE

(a) (b)

v1 v2 v3 v4 v5 v6
2 3 2 4 2

d1
d2
d3

d4

d5

d6

d7

d8 v11
v12

v13
v14

v21
v22

v23
v24
v25

v31
v43
v44
v45
v46
v47
v48

v41

v42

v51

v52
v53

v54

(c)

v1 v2 v3 v4 v5 v6
2 3 2 4 2

d1
d2
d3

d4

d5

d6

d7

d8 v11
v12

v13
v14

v21
v22

v23
v24
v25

v31
v43
v44
v45
v46
v47
v48

v41

v42

v51

v52
v53

v54

(d)

SHORTCUT

CANONICAL FORM

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 17 / 50

Properties of the Canonical Form

The congestion on every edge is r and the load on edge e is rce.

There is no vertex where one request ends and another request starts.

Every vertex is either a source or a destination for some requests, but
not both. This would mean that the whole vertex set V can be
partitioned into two disjoint sets, namely source vertices S and
destination vertices T , depending on whether requests start or end at
a vertex.

The first vertex v1 is always a source vertex and the last vertex vn is
always a destination vertex.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 18 / 50

Properties of the Canonical Form continued...

The number of requests starting/ending at a vertex vi is
r|ci − ci−1|. 1

If ci > ci−1, the number of requests starting at vertex vi is r(ci− ci−1).
If ci < ci−1, the number of requests ending at vertex vi is r(ci−1 − ci).

The number of colors required for the original instance is at most the
number of colors required for the canonical form. That is,

OPT(original problem instance) ≤ OPT(canonical form).

1For this claim, we define c0 = cn = 0.
Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 19 / 50

Number of requests starting at a vertex vi

e1 ei−1 en−1

v1 vi−1 vi vi+1

ei ei+1

vn

rci−1

r(ci − ci−1)

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 20 / 50

An Optimal Interval Coloring Algorithm for Unit Demands

Let S and T be the set of source vertices and destination vertices.
Every interval starts at some vertex s ∈ S and ends at some vertex
t ∈ T .

For every vertex vi ∈ S, deg(vi) = r(ci − ci−1). Split the vertex into
(ci − ci−1) vertices each having degree r.

For every vertex vi ∈ T , deg(vi) = r(ci−1 − ci). Split the vertex into
(ci−1 − ci) vertices each having degree r.

Create a bipartite graph H = (X,Y, F), where X is the set of all
(including split) vertices created from vertices in S and Y is the set of
all (including split) vertices created from vertices in T . F is the set of
all edges between X and Y as defined by the requests in the
canonical form. This can be done by splitting the vertices one at a
time, first from the X side and then from the Y side.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 21 / 50

Suppose there is a vertex x ∈ X from which rq edges go to vertices
y1, . . . , yt ∈ Y . We split the vertex x into vertices x1, . . . , xq ∈ X.
We distribute the edges from x so that the first r edges are incident
on x1, the next r edges are incident on x2 and so on. We repeat this
for all vertices in X one by one and then for all vertices in Y . The
resulting graph is in general a r-regular multigraph.

Since H is a r-regular bipartite graph, by Hall’s theorem, it has a
perfect matching M1.

Remove the edges in M1. The resulting bipartite graph is
(r − 1)-regular and it has a perfect matching M2.

Continuing in this way we can see that F can be partitioned into r
edge-disjoint union of perfect matchings M1, . . . ,Mr.

Since, we can assign one color to each matching Mi, every edge in H
can be colored using r colors. Hence, every request in the canonical
form and so in the original instance can be colored using r colors.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 22 / 50

Illustration of the Interval Coloring Algorithm

v1 v2 v3 v4e1 e2 e3

4 2 1
v1 v2 v3 v4e1 e2 e3

4 2 1

(a) (b)

v1,2

v2,1

v2,2

v3

v4

v1 v2 v3 v4e1 e2 e3

4 2 1

(d)(c)

v1,1

v1,4

v1,3

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 23 / 50

Analysis of the Algorithm

Theorem

The above algorithm feasibly colors all the requests with r colors.

Proof: Since we have already shown that every request in the
canonical form and so in the original instance can be colored using r
colors, the only thing to be proved is that requests in each color class
is feasible.

All that needs to be shown is that the total load on any edge ei by all
the requests in any color class is at most ci.

We proceed by induction on the index i of edge ei.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 24 / 50

Base Case: For i = 1, since there are c1 vertices created from v1
from which requests passing through edge e1 can originate, and in
each matching at most one edge (request) incident on these vertices
can be selected, the number of requests passing through edge e1 in
each color class is at most c1.

Induction Step: Suppose the result is true for i− 1. There are
two cases to consider.

vi is a source vertex: We know that there are (ci − ci−1) vertices
created from vi from which requests starting at vi can originate. The
requests passing through edge ei either started at vi or are those also
passing through edge ei−1.

Since vi is a source vertex, no request passing through edge ei−1 can
end at vi and hence they must pass though ei. The number of the
first type of requests is (ci − ci−1), and the number of the second
type of requests is ci−1 (inductively). Hence, the number of requests
passing through edge ei is at most (ci − ci−1) + ci−1 = ci.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 25 / 50

Feasibility of edge ei

e1 ei−1 en−1

v1 vi−1 vi vi+1

ei ei+1

vn

ci−1

ci − ci−1

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 26 / 50

vi is a destination vertex: We know that there are (ci−1 − ci) vertices
created from vi to which requests ending at vi can terminate. The
requests passing through edge ei either started at vi or are those also
passing through edge ei−1.

Since vi is a destination vertex, no request passing through edge ei
can start at vi and hence they must pass though ei−1. The number of
requests passing though ei−1 is ci−1 (inductively). Out of these,
exactly (ci−1 − ci) requests end at vi. Hence, the number of requests
passing through edge ei is at most ci−1 − (ci−1 − ci) = ci.

Since, the total load on any edge ei by all the requests in any color
class is at most ci, the algorithm colors all the requests with r colors
in a feasible manner.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 27 / 50

A 3-approximation Algorithm for Uniform Capacities

Each edge of P has capacity c.

A demand di is called large if di >
1
2c. Otherwise, it is called small.

We separate the demands into large and small demands.

Let OPT(L) and OPT(S) be the optimum number of colors
required for the instance containing only large demands and only
small demands respectively.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 28 / 50

An optimal algorithm for large demands

Sort the demands based on their left endpoints.

Let Di be the set of requests starting at vi, 1 ≤ i ≤ n− 1.

We will pack the requests in D1, . . . , Dn−1 in this order.

Starting with the requests in D1, we try to allocate the requests in
Di, 1 ≤ i ≤ n− 1 in the current copy of the path, if it does not
violate any edge capacities.

Otherwise, we allocate a new copy and assign it there.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 29 / 50

Lemma

If χ is the number of colors required for coloring the large demands, then
OPT(L) ≥ χ.

Proof: If two large demands share any edge, they can’t be given the
same color, because the total load on the edge is more than c.

Consider the demand d for which the last color χ was opened. Since
d could not be assigned any one of the first χ− 1 colors, there are
χ− 1 large demands, one for each color, which shared an edge with d.
Since the demands have been considered in a left to right manner, all
these χ− 1 large demands will pass through the first edge e of d.

Together with d, there are χ large demands passing through the edge
e. Hence, the optimum has to give each of them a separate color, so
it will also require at least χ colors. Hence, this algorithm uses the
minimum number of colors.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 30 / 50

Analysis for large demands

v1 v2e1 e2 vnvn−1

d

vi ei

1

2

χ

χ− 1

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 31 / 50

A 2-approximation algorithm for small demands

The algorithm is the same as that for the large demands.

Let t be the number of copies of the path P required to assign all the
requests in D1, . . . , Dn−1.

Let li be the load on edge ei.

Lemma

When all the requests in D1, . . . , Dn−1 have been colored, there is an edge
ei such that in at least t− 1 copies of P , li >

1
2c.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 32 / 50

Analysis for small demands

v1 v2e1 e2 vnvn−1

d

vi ei

1

2

t

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 33 / 50

Consider the demand d ∈ Di (for some i) due to which the last color
t was opened. At the time d was considered, all the requests started
on or before vi.

Since d could not be assigned any of the previous t− 1 colors, there
are t− 1 edges, one for each color, such that the total load put by the
existing small demands on each of these edges is strictly more than
c− d ≥ 1

2c since, d ≤ 1
2c.

Since the demands have been considered in a left to right manner, the
load on the first edge ei of d on each of these t− 1 colors is at least
as much.

Hence, ei is the edge such that li >
1
2c.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 34 / 50

The total load put by requests in D1, . . . , Dn−1 on ei is greater than
1
2c(t− 1).

Hence, any packing of these requests (including OPT(S)) will
require more than 1

2(t− 1) copies, since the edge capacity is c.

Thus, OPT(S) > 1
2(t− 1).

Hence, t < 2 ·OPT(S) + 1 ≤ 2 ·OPT(S).

Since, we can assign all the requests in D1, . . . , Dn−1 using
t ≤ 2 ·OPT(S) copies, this is a 2-approximation algorithm.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 35 / 50

A 3-approximation algorithm

We solve the instance containing only large demands and the instance
containing only small demands separately.

ALG(L) = OPT(L) and ALG(S) ≤ 2 ·OPT(S).

OPT ≥ max{OPT(L),OPT(S)}.
Hence the total number of colors required by the algorithm is

ALG = ALG(L) + ALG(S)

≤ OPT(L) + 2 ·OPT(S)

≤ 3 ·OPT.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 36 / 50

Arbitrary capacities, arbitrary demands for Round-UFP

Separate the requests based on whether di >
1
4bi (large demands) or

di ≤ 1
4bi (small demands), where bi is the bottleneck edge capacity.

We sort the small demands based on their left endpoints and then
assign a demand to the first color, where the total load on the
bottleneck edge e is at most ce

16 .

It can be proven that this requires at most 16r colors and the coloring
is feasible.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 37 / 50

For large demands, round down capacity of every edge to the nearest
multiple of cmin.

This will increase the congestion r by a factor of 2.

Round up every demand to cmin. Note that for any large demand,
di >

1
4bi ≥ 1

4cmin.

Moreover, di ≤ cmin because of NBA.

This will increase the congestion r by a factor of 4.

The resulting instance has uniform demands, which can be colored
with r colors. So, large demands require 8r colors.

In total, we require at most 24r ≤ 24 ·OPT colors.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 38 / 50

Linear Programming formulation for Max-UFP

A natural linear programming formulation for Max-UFP on a path is
given below. Here xi denotes the fraction of the demand i that is satisfied
and Ii is the unique path between si and ti.

maximize
k∑
i=1

wixi (UFP-LP)

such that
∑
i:e∈Ii

dixi ≤ ce ∀e ∈ E

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , k}

If we replace the constraints xi ∈ [0, 1] by the constraints xi ∈ {0, 1} we
get an integer program, which precisely models the Max-UFP problem.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 39 / 50

Convex decomposition of a fractional LP solution

Suppose x is a feasible fractional solution for a maximization LP and
z1, . . . , zk be feasible integral solutions for the LP.

Let x =
∑k

i=1 λizi, where
∑k

i=1 λi = α.

Then the best solution, say zmax among z1, . . . , zk is at least 1
α

fraction of the value of x.

This can also be viewed as covering the fractional solution with some
integral solutions, which is like coloring.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 40 / 50

Max-UFP and Bag-UFP

Separate the requests based on whether di >
1
4bi (large demands) or

di ≤ 1
4bi (small demands), where bi is the bottleneck edge capacity.

For Max-UFP, large demands instance can be solved optimally
using dynamic programming.

We can get a 16-approximation using ideas from Round-UFP.

Overall, we get a 17-approximation.

For Bag-UFP, there is a 48-approximation for large demands.

We can get a 17-approximation using ideas from Round-UFP and
the fact that a factor of 1 will be added due to bag constraints.

Overall, we get a 65-approximation.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 41 / 50

Online Interval Coloring with capacities and demands

We scale down all capacities and demands by a factor of cmin, so that
the new cmin = 1 and the new dmax ≤ 1.

Then we round down all edge capacities to the nearest power of 2, so
that if c(e) ∈ [2k, 2k+1) then the new c(e) = 2k.

The class of a demand di is defined as `i = log2 c(bi).

For a demand di in class j ≥ 1, we call it a small demand if
di ≤ min(1, 2j−3).

For a demand di in class 0, we call it a small demand if di ≤ 1
4 .

Note that large demands can exist only in classes 0, 1 and 2.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 42 / 50

Schematic representation of classes of demands

Class Small Large Bottleneck capacity Allocated capacity
0

(
0, 14
] (

1
4 , 1
]

1 1
1

(
0, 14
] (

1
4 , 1
]

2 1
2

(
0, 12
] (

1
2 , 1
]

4 2
3 (0, 1] none 8 4
...

...
...

...
...

j (0, 1] none 2j 2j−1

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 43 / 50

Handling small demands

Small demands are 1
4 -small.

The resulting instance has uniform capacity.

4-competitive algorithm for this.

Additional loss of a factor of 8 due to rounding and allocating only
2j−1 capacity instead of 2j .

So this is 32-competitive.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 44 / 50

Algorithm for small demands and uniform capacity

Our algorithm partitions intervals into disjoint sets and colors each set
independently with separate colors.

S = {S1, S2, . . .} is the family of sets containing already processed
requests.

Si is the set of requests at level i.

For each new request R, we look for a set with the lowest possible
index k such that the total load of all the demands in(⋃k

i=1 Si

)
∪ {R} on any edge e of R does not exceed 1

4kc.

If on any edge e this inequality is violated, we call e a critical edge of
R on that level.

Note that e is the edge which prevented R to be put on level k.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 45 / 50

An online algorithm for 1
4-small demands

k ← 1;
while there are still requests in the input do

let R be the next request;

while for any edge e ∈ R, le
((⋃k

i=1 Si

)
∪ {R}

)
> 1

4kc do

// e is called a critical edge of R on level k.
k ← k + 1;

end
Sk ← Sk ∪ {R};
give R the lowest numbered color not used in any sets S1, . . . , Sk−1
and consistent with Sk;

end

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 46 / 50

Competitive ratio

Small demands require at most 32 ·OPT colors.

Large demands in classes 0, 1 and 2 require at most 26 ·OPT colors.

Total number of colors required is at most 58 ·OPT.

Hence, this algorithm is 58-competitive.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 47 / 50

How bad the congestion bound can be?

v1 v2e1 e2 vn+1vn en

2 12n−1 2n−2

2n−1

2n−2

2

1

2n−3

2n−3

opt = n, r = 2, ω = n.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 48 / 50

Conclusion

In this talk, we presented several algorithms for solving various
instances of the Round-UFP problem.

We saw that some special cases of this problem can have much better
algorithms.

We also showed how an algorithm for Round-UFP can be used to
solve the Max-UFP and Bag-UFP problems.

The idea of convex decomposition of fractional LP solutions is useful
for this.

This gives a unified framework for solving these problems.

We also gave a constant competitive algorithm for the Online
Interval Coloring problem.

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 49 / 50

Future work

Can we improve the approximation factor for uniform capacities from
3 to 2?

Is there a unified algorithm for Round-UFP for all cases?

Can we improve the approximation factor of Round-UFP,
Max-UFP and Bag-UFP problems on paths and trees?

What is the approximability of these problems without the
no-bottleneck assumption? For Max-UFP on paths, a
(7 + ε)-approximation is known.

Is there a better constant factor competitive algorithm for the
Online Interval Coloring problem?

What is the hardness of approximation of these problems?

Arindam Pal (IIT Delhi) Approximation Algorithms for UFP November 2, 2012 50 / 50

